Unbounded solutions of an iterative-difference equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbounded Positive Solutions and Mann Iterative Schemes of a Second-Order Nonlinear Neutral Delay Difference Equation

and Applied Analysis 3 Then (a) for any L ∈ (N,M), there exist θ ∈ (0, 1) and T ≥ n 0 + τ + β such that for each x 0 = {x 0n } n∈N β ∈ A(N,M), the Mann iterative sequence with errors {x m } m∈N 0 = {x mn } (m,n)∈N 0 ×N β generated by the scheme

متن کامل

Unbounded solutions of the nonlocal heat equation

We consider the Cauchy problem posed in the whole space for the following nonlocal heat equation: ut = J ∗u−u , where J is a symmetric continuous probability density. Depending on the tail of J , we give a rather complete picture of the problem in optimal classes of data by: (i) estimating the initial trace of (possibly unbounded) solutions; (ii) showing existence and uniqueness results in a su...

متن کامل

BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION

In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

Unbounded Solutions of the Difference Equation xn xn − lxn − k − 1

and Applied Analysis 3 Moreover, according to the above-mentioned comment related to negative indices the solution can be regarded as a two-sided periodic solution, that is, the solution is of the form xn ∞ n −∞. System 2.2 is equivalent to pi pi k 1 pi k f ( pi k ) , i 0, 1, . . . , l − 1. 2.5 From this and l periodicity of the sequence pi , it follows that pi f l ( pi lk ) f l ( pi ) , i 0, 1...

متن کامل

$\psi$-Appell polynomials` solutions of an umbral difference nonhomogeneous equation

One discovers why Morgan Ward solution [1] of ψ-difference calculus nonhomogeneous equation ∆ ψ f = ϕ in the form f (x) = n≥1 B n n ψ ! ϕ (n−1) (x) + ψ ϕ(x) + p(x) recently proposed by the present author (see-below)-extends here now to ψ-Appell polynomials case-almost automatically. The reason for that is just proper framework i.e. that of the ψ-Extended Finite Operator Calculus(EFOC) recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Universitatis Sapientiae, Mathematica

سال: 2017

ISSN: 2066-7752

DOI: 10.1515/ausm-2017-0015